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Abstract. The single facility location problem with general attraction and repulsion functions is 
considered. An algorithm based on a representation of the objective function as the difference of two 
convex (d.c.) functions is proposed. Convergence to a global solution of the problem is proven and 
extensive computational experience with an implementation of the procedure is reported for up to 
I00,000 points. The procedure is also extended to solve conditional and limited distance location 
problems. We report on limited computational experiments on these extensions. 
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1. Introduction 

The origins of location theory can be traced to Fermat's challenge, in his 17th 
century essay on maxima and minima, to find a point in the plane such that the sum 
of its distances to three given points is a minimum. The problem and its general- 
ization to weighted sums of distances remained in the province of mathematicians 
until the early 20th century when Weber [20] used the theory for the location of  
industries. Today, the simplest version of Weber's problem (sometimes called the 
Fermat-Weber problem) is to locate a single facility in the plane that minimizes 
the sum of weighted Euclidean distances to the locations of n known users. The 
historical developments and many contributions to the problem and its extensions 
are, well documented in the literature (see, e.g., Love et al. [8]). 

When all of the weights are positive, the objective function is convex and 
the problem is easily solved by an iterative procedure proposed by Weiszfeld 
[21]. The problem becomes much harder when some of the weights are taken to 
be negative. In this case, when minimizing the objective function, users having 
positive weights are attracted to the facility and those having negative weights 
are repelled by the facility. For example, a neighborhood school or civic center is 
attractive to most residents of a community, but those with contiguous properties 
may understandably object because of increased noise and traffic, and decreased 
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residential property values. The first exact algorithm for finding a global solution 
to the general problem was proposed by Chen et al. [2]. The procedure exploited 
recent results from d.c. programming and was implemented to solve randomly 
generated problems with up to 1000 users. In addition, Chen et al. [2] extend their 
procedure to exponentially decaying repulsion and to constraining the facility to be 
located in one of a finite number of disjoint convex polygons. In further extensions 
to their work, Chen et al. [3] propose exact procedures for the multisource Weber 
problem, the conditional multisource Weber problem, and the limited distance 
location problem (see Section 7 below for definitions of these problems). Recently, 
Maranas and Floudas [9] developed a procedure for locating a single facility in 
a rectangle, containing all users, that directly exploits the problem structure. The 
authors report computational results on solving randomly generated problems with 
up to 10,000 users. 

The location problems discussed above were all variations and extensions of 
the classical Weber problem. Generalizations to the Weber problem give rise to 
harder problems that capture more applications. One such problem was considered 
by Idrissi et al. [7] involving the maximization of the sum of decreasing con- 
vex functions of arbitrary distance metrics. The problem is formulated only for 
attraction points, but each user can have a different metric which need not be sym- 
metric, so that both norms and gauges are possible. Idrissi et al. [7] develop a pro- 
cedure based on solving a sequence of parameterized Weber problems for find- 
ing a local solution to the problem. Tuy and A1-Khayyal [18] proposed the first 
algorithm for finding global solutions to the problem by reducing it to the 
solution of a sequence of unconstrained nondifferentiable convex minimization 
problems and specializing a polyhedral annexation procedure for the case when 
the distance metric is a polyhedral norm. Computational results were not 
reported. 

In this paper we extend the work of Tuy and A1-Khayyal [18] to the case of 
both attraction and repulsion, and develop an entirely new procedure based on 
a d.c. reformulation of the problem. We implement our procedure and report on 
computational experiments on more than three-thousand randomly generated test 
problems. We also discuss extensions of the basic procedure to limited distance 
and conditional location problems. The remainder of the paper is organized as 
follows. The problem under consideration is formally presented in Section 2 and 
its d.c. reformulation is described in Section 3. The global optimization algorithm 
is presented in Section 4 and its convergence is treated in Section 5. The results of 
computational experiments on test problems with up to 100,000 users are reported 
in Section 6. Extensions to the limited distance and conditional location problems 
are discussed in Section 7, including computational results on these problems. We 
also include an appendix on how to compute the subgradients called for by the 
procedure. In the interest of brevity, the remainder of the paper assumes a basic 
knowledge of the fundamental concepts in deterministic global optimization as 
detailed in Horst and Tuy [6]. 
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2. Facility Location in the Presence of Attraction and Repulsion 

The following problem has been studied in [7] and [18]: 
A facility must be constructed in some area M in the plane (a convex polygon 

in R 2) to serve n users located at points aJ E M. If the facility is located at x E M, 
then the attraction of the facility to user j  is qj(hj(x)), where hi(x) = IIx - a j II is 
the distance from x to aJ and qj : R+ ~ R+ is a convex decreasing function (the 
farther x is away from a j the less attractive it looks to user j).  We want to determine 
the location of the facility so as to achieve maximal total attraction, i.e. 

n 

maximize ~ qj[hj(x)] s.t. x E M. (1) 
j = l  

In this model only attraction points are considered. In practice, aside from 
attraction points there may exist repulsion points as well ([5], [2], [9]). For example, 
in the presence of garbage dumps, sewage plants, or nuclear plants in the area, one 
may wish the facility to be located as far away from these points as possible. If J1 
is the set of attraction points and J2 the set of repulsion points, then instead of (1) 
one should seek to maximize the function 

F(x) := ~ qj[hj(x)]-  ~ qj[hj(x)]. (2) 
jEJI jeJ2 

In typical situations we have 

{ O~j --WjliX- aJl] j E J1, 
qj[hj(x)] = wje_O&~_,~il I j E J2. 

where a j  > 0 is the maximal attraction of point j E J1, Oj > 0 is the rate of decay 
of the repulsion of point j E J2 and wj > 0 for all j (the classical Weber's problem 
corresponds to the case J2 = 0). 

Frequently, [[. ][ is taken to be the usual Euclidean norm, but in the general case, 
a different norm or even a gauge function can be associated with each point a i. 

Thus the general single facility location problem can be formulated as: 

where M is a convex polygon in R 2 and, for every j = 1 , . . . ,  n, qi : R+ ---. R+ is 
a convex decreasing function, while h i : R 2 ~ R+ is a convex function such that 
hi (a i )  = O, h i (x )  > 0 for x # ai  and h i (x )  --, as Ilxll --' (see [161). 

Since the objective function (to be maximized) is not concave, problem (P)  is 
a nonconvex global optimization problem for which many local maximizers may 
exist which are not global solutions. However, under mild assumptions, we will 
show in the next section that (2) is in fact a d.c. function, so that (P)  is a d.c. 
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maximization problem over M. Since the dimension of x is small (M C R 2, ) this 
problem can be solved by recently developed d.c. optimization methods (see e.g. 
[16]), even for fairly large values of n. 

3. D.C. Reformulation of  the Location Problem 

In the results below (see [17]), the function q+ (t) represents the right derivative of 
q(t) (see [10]). 

LEMMA 1. Let h: M ~ R+ be a convex function on a compact convex subset of  
R m. I fq  : R+ --* R is a convex nonincreasingfunction such that q+(0) > - c o ,  
then q[h(x)] can be expressed as the d.c. function on M 

q[h(x)] = g(x) - Ch(x) ,  

where 9 (x) is a convex function and C is a positive constant satisfying C>_[q + (0)]. 
Proof. We have q+(O)<_q+(t)<_O Vt_>0, therefore ~(t) = q(t) + Ct satisfies 

(t+(t) = q+(t) + C>_q+(O) + C>_O Vt_>0, which implies that the convex func- 
tion ~ is nondecreasing. For any x, x ~, c~ E [0, 1] we then have ~[h(ax + (1 - 
a)x')]<(l[ah(x) + (1 - a )h (x ' ) ]<a( l [h (x ) ]  + (1 - a )~[h(x ' ) ] .  Consequently, the 
function g(x) :=  ~[h(x)] is convex and 9(x) = q[h(x)] + Ch(x) ,  as was to be 
proved. [] 

LEMMA 2. Let h: M --* R+ be a convex function on a compact convex subset of  
R m. I fq  : R+ --+ R is a concave nondecreasingfunction such that q+(0) < co, 
then q[h(x)] can be expressed as the d.c. function on M 

q[h(x)] = 9(x) + Ch(x) ,  

where g( x ) is a concave function and C is a positive constant satisfying C > l q + (0) 1. 

PROPOSITION 1. Assume 

q+(O) > - c o  Vj. 

Then the function F ( x ) defined by (2) can be expressed as: 

F ( x ) = G ( x ) - g ( x ) ,  

with G(x) and H (x) being convex functions defined by 

C(x) := Z gj(x) + c hj(x) 
jeJ1 jEJ2 

H(x)  := ~ gj(x) + ~ Cjhj (x)  
jEJ2 jEJ1 

gj(x) = qj[hj(x)] + C j h j ( x ) ,  j = 1 , . . . , n .  

(3) 
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and Cj being constants satisfying Cj>lq + (0)l. 
Proof. By Lemma 1, 

F(x)=[~-~gj(x)+~'~Cjhj(x)]-[~-~gj(x)+ECjhj(x)] ' I j E J 1  jEJ2 IjEJ2 jEJI 

whence the result. [] 

Thus problem (P) can be rewritten as the d.c. maximization problem: 

max{G(x) - H ( x ) :  x ~ M}. (Q) 

REMARK. The single facility location problem also has the equivalent cost 
formulation 

min{j~qj[hj(x)]-jeJ2~--~qj[hj(x)]" x E M } ,  

where each qj is now a concave increasing function. 

4. A D.C. Maximization Algorithm 

Several methods are available for solving the d.c. maximization problem (Q) (see 
[6], [16] and references therein). For instance, one can convert (Q) into the convex 
maximization problem [6] 

max{G(x) - t :  H(x)<t, x E M} 
and solve the latter by outer approximation (see e.g. [2]). Alternatively, one can 
solve (Q) by a branch and bound method using rectangular subdivision as in 
[9]. However, the outer approximation method needs an additional variable t, 
while a rectangular branch and bound method would require for bounding the 
computation of a concave envelope of G(x) - H(x) over each rectangle (recall 
that this is a maximization problem), and has to use a non-adaptive exhaustive 
subdivision process defined independently of the problem conditions at every 
current iteration. In addition, both methods assume special forms of the functions 
qj(.),j= l,...,n. 

To better exploit the structure of (Q), in the sequel we propose to solve (Q) using 
a triangular branch and bound method in which upper bounds are computed as in 
([15]) (see also [16] (Section 9.1.1, Remark (ii)), while branching follows a normal 
triangular subdivision scheme [15] (see also [6]). The bounding and subdivision 
operations of the procedure are explained below before the formal presentation of 
the algorithm. 

I. Bound computation. At iteration k of the procedure we have in hand a 
convex piecewise affine minorant Lk(x) with IIkl linear pieces li(x) resulting 
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from the previous iterations. For each newly generated triangle S, let Gs(x)  be 
the affine function that agrees with G(x) at the vertices of S (because of the 
convexity of G(x), Gs(x)  is a majorant of G(x) on S), Then an upper bound for 
max{G(x) - H(x)  : x E S fq M} is given by the optimal value of the linear 
program 

LP(Lk, S) a(S)  := max{Gs(x)  - t : l~(x)<t (i EIk) ,  x E S M M }  

where li (x) are linear functions such that, for every k, {x E S : li(x) <t, i E Ik  } D_ 
{x E S : H(x)<t} .  The latter program is equivalent to max{Gs(x)  - Lk(x) : 
x e S n M } .  

The bound computed as above depends upon the function Lk(x) used for 
underestimating H(x)  on S. To ensure asymptotic exactness (consistency) of this 
bound, the underestimator Lk (x) must be refined at each iteration k. The refinement 
is achieved by computing, at each iteration k, a linearization lk (x) of H(x)  at an 
appropriate point x k and defining Lk+l (X) = sup{Lk(X), lk(x) }. The point x k, 
at which the linearization lk(x) of H(x)  should be constructed, is a basic optimal 
solution of the linear program LP(Lk, Sk) associated with the most promising 
triangle Sk at this stage. We prove later that this will ensure convergence of the 
sequence H(x  k) - Lk(x k) ~ O. 

As a linearization of H(x)  at x k we take 

lk(X) = (pk, x -- x k) + g (xk ) ,  

where plr is a subgradient of H(x)  at x k. Although H(x)  results from the compo- 
sitions of a number of functions, a subgradient of it at any point can be computed 
easily (see Appendix for the details of this computation). 

II. Subdivision. Given any triangle S, and a point y E S which is not a vertex 
of S, we can join y to the vertices of S to define a radial subdivision of S in 
subtriangles. When y is the midpoint of the longest side of S the subdivision is 
called a bisection. A basic result of the theory of simplicial subdivision processes 
is the following [13]. 

PROPOSITION 2. Let {S~,} be a nested sequence of  m-simplices in R m and for 
each v let x v be any point in S~. Assume that 

(1) For infinitely many v, Sv+l is a subsimplex of Sv in a bisection; 
(2) For all other v's, Sv+l is a subsimplex of Sv in a radial subdivision via x V. 

Then at least one cluster point of the sequence {x v} is a vertex of  the simplex 
O0 S V  ~ Soo = n v =  1 

Now in the proposed branch and bound algorithm, at every iteration k a triangle 
Sk is selected which must be further subdivided. As Sk should be in a sense the 
most promising among the triangles still of interest in the current partition, we 
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choose Sk to be the triangle S with maximal a(S) ,  among all mentioned triangles. 
Let x k be a basic optimal solution of the linear program LP(Lk, Sk) used for 
computing the upper bound a(Sk).  Then, from the definition of LP(Lk, Sk) and 
the fact a(Sk)ea(S)  for all triangles S in the current partition we can easily see 
that 

Gs~(x k) - Lk(xk)>_G(x) - Lk(x)>G(x)  - H(x)  Vx E M. 

Therefore, if x k is a vertex of Sk (so that Gs~(x k) = G(xk)) and if Lk(x  k) = 
H(xk) ,  then the above inequality shows that x ~ is an optimal solution of (Q) and 
the algorithm terminates. Thus, the algorithm is continued only in either of the 
following situations: 

(1) x k is not a vertex of Sk; 
(2) x k is a vertex of Sk while Lk(x k) < H(xk) .  

Furthermore, the above considerations suggest that the algorithm should try to bring 
x k closer and closer to a vertex of Sk, while reducing the difference H ( x  k) - L k  (x k) 
to zero (the latter fact can be ensured by an appropriate selection of the sequence 
Lk(')). On the basis of Proposition 4 we can ensure that x k comes closer and closer 
to a vertex of Sk by generating a subdivision process such that: at every iteration 
k, Sk is either bisected, or is radially subdivided via x k, while any infinite nested 
sequence of triangles generated by the subdivision process involves infinitely many 
bisections. A subdivision process satisfying this condition is called normal. 

Practically, to generate a normal subdivision process, every triangle S generated 
during the process is assigned a generation index T(S) such that any initial triangle 
S (triangles of first generation) has index T(S) = 1, and every son S' of a triangle S 
has index T(S') = T(S) + 1. Then for any (arbitrary) infinitely increasing sequence 
A of natural numbers, we seek to 

bisect Sk i l k  E A,  and subdivide Sk via x k, otherwise. 

The normality of such a rule is immediate. It is also obvious that the sequence 
A expresses how often we use bisections in the subdivision process. 

The proposed algorithm can now be described as follows. 

Algorithm 
Step 0. Start with a set S1 of triangles covering M or a region known to 
contain at least a global optimal solution (e.g. take $1 = {$1}, where $1 is 
a triangle containing M) ,  together with a point x ~ E M, the best feasible 
point available. Let lo(x) = (pO, x - x ~ + H(x~ where p0 E OH(x~ Set 
L1 (x) = lo(x), 5: = x ~ 7 = G(~) - H(~) ,  ~r~ 1 ~-- ~ 1  = Sl,  T(S) = 1 for 
every S 6 S1. Set k = 1. 

Step 1. For each S E 7~k, solve the linear program LP(Lk, S) to obtain the 
optimal value a(S)  and a basic optimal solution x(S).  
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Step 2. Update Z and 7. Delete every S �9 Sk such that o~(S)<,), and let ~Ir be 
the set of remaining simplices. If ~ k  = 0, then terminate: :~ solves (Q). 

Step 3. Select Sk �9 argmax{o~(S) : S �9 ~k}.  Let x k = x(Sk),  t k = Lk(xk).  
3a. If t k = H ( x  k) and x k is a vertex of Sk then terminate: x k solves 

(Q). 
3b. I f t  k = H ( x  k) andx k isnot avertexofStr thenset Lk+l (x) = Lk(x).  
3c. Otherwise, define lk ( x ) = (pk, x -- x k) + H ( x k) with pk �9 O H  ( x k) 

and let Lk+l(x) = sup{L/c(x),/k(x)}. 

Step 4. Bisect Sk or subdivide Sk via x to, according to a normal rule. 

Let 7~k+1 be the partition of Sk. Set T(S) = T(Sk) + 1 for every S �9 T~k+l, 
Sk+l = (7~k \ {Sk}) U 7~k+1, k ~-- k + 1 and go back to Step 1. 

REMARK. The sequence A in the normal subdivision rule can be chosen once at 
the beginning. For example we can take a natural number N (typically N = 5 as 
in many computational experiments with branch and bound algorithms of concave 
minimization) and define A = {N, 2N, 3 N , . . . ,  } (sequence of multiples of N).  
Alternatively, since theoretically A can be arbitrary, a more efficient strategy may 
be to define the elements of A one by one, as needed, in the course of the algorithm, 
and use A to monitor, to some extent, the speed of convergence of the algorithm. 
In general, one may try to use as many subdivisions via x k as possible, and have 
recourse to a bisection when the algorithm seems to slow down. 

5. Convergence 

If the algorithm terminates at Step 3a then Lk(x  k) = H ( x  k) (because t k = 
Lk(xk)),  while Gs~(x k) = G(x  k) and, as we saw above, x k is indeed a global 
optimal solution of (Q). 

Suppose now that the algorithm is infinite, so that an infinite sequence {x k } is 
generated. Write Gk(x) for Gsk (x). 

LEMMA 3. There exists a subsequence x kV --+ :c such that Gkv (x k~ ) --* G(Sc). 
Proof. By a standard argument, the algorithm, if infinite, must generate at least 

an infinite sequence of nested triangles. Let ( S ~  } be such a sequence. Since the 
subdivision process is normal, by Proposition 4, at least one cluster point of the 
sequence {x k~ } coincides with a vertex ~ of the limit triangle S ~  = Nu Sk~. By tak- 
ing a subsequence if necessary, we can assume that x k~ ~ ~c. Let v k,i, i = 1,2, 3, 
be the vertices of Sk, so that x ~ 3 3 = ~,i=1 ~k,i v~'i with ~k,i>O, ~ i = l  )~k,i = 1, 
and Gk(x k) 3 = ~i=1/~k,iG(vk'i) �9 We may assume v k~'i ~ ~z,i = 1,2,3, so 
that S ~  is the convex hull of V 1, ~2, V3. Since :~ is a vertex of S ~  we have 

E {~1, V2, ~3}, for instance, :~ = ~1, i.e. v k~,l ~ 5c. The latter fact implies that, 
by taking a subsequence if necessary, Ak~,l ---* 1, )~k~,i ~ 0 (i # 1), and hence, 
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[] 

LEMMA 4. For any subsequence x k~ --, 5c we have Lk~ (x k~) --* H(~).  
Proof. Since the sequence {x k} is bounded, then the sequence {pk} is also 

bounded (see [10]). We can, therefore, assume that pk~ ~ p E OH(5c). Now for 
u > # we have 

H (xk~ )>tk~ = Lk~ (xk~ )>lk, (x k~ ) = (pk~,Xk~ -- Xk~ ) + H(xk"  ). 

Letting u ~ oc, we obtain 

H(~) > lira sup Lk~ (x k~') > lim inf Lk~, (x k~ ) >_ (pk~,, 5C -- X k~') + H ( x  &'), 

and letting # --~ c~ yields the desired result. [] 

Let ~k be the current best feasible solution at iteration k and ~/k = F(s 

THEOREM 1. I f  the above Algorithm is infinite, then at least one cluster point 
of  the sequence {x k } is a global optimal solution. Hence, 7k tends to the optimal 
value of  problem (Q) and any cluster point of  the sequence ~k is a global optimal 
solution of(Q). 

Proof. By Lemmas 2 and 3, there exists a subsequence x k~ ---, ~ such that 

ak~(x k~) --* G(&), Kk~(x k~) --* H(&). 

Since forevery u, Gk~ (xk~ )--Lk~ (x ~ ) = ak~ (xk~ )--tk~ >G(x ) - -H(x )  Vx E M,  
it follows that 

G(b) - H ( b ) > G ( x )  - H(x )  Vx E M. 

Therefore, ~ solves (Q). The rest is clear. [] 

Consequence Given a tolerance e > 0 i f  we stop the Algorithm at iteration k such 
that 

Gk(x  ~) tk>7~ - e 

then x k is a global e-optimal solution (in the sense that G(x k) - H ( x k ) e  max 
{ G ( x )  - H ( z )  : x E M} - r 

6. Computational Experience 

The above method is a branch and bound algorithm in R 2, where branching is by 
triangular subdivision and bounding involves solving linear programs LP(L, S) in 
only three variables. Computational experience with branch and bound algorithms 
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for d.c. optimization suggests that such algorithms should be efficient even for 
fairly large n. 

In the special case of Weber's problem with attraction and repulsion, our branch 
and bound algorithm differs from the one in [9] not only in the subdivision method 
(triangular rather than rectangular) but also in the subdivision rule (normal rather 
than exhaustive). 

In order to evaluate the efficiency and robustness of our algorithm, we imple- 
mented the procedure in double precision FORTRAN 77 on a SUN SPARC 20 
Model 50, rated at 143.2 MIPS, 30.6 MFLOPS, and 78.3 SPECfp92. The user points 
are generated randomly from a uniform distribution in the unit square (0, 1) • (0, 1). 
The maximal attraction, the rate of decay and weight for each point are selected 
from a uniform distribution in (0, 30), (0, 3) and (0, 2), respectively. We set the 
convergence tolerance to e = 10 -5 and use E04MBF in the NAG library as our LP 
solver. 

In the following tables, we report the total number of points n, the number 
of repulsion points n - ,  the average number of iterations #Iter and CPU times 
#cl'u, and their standard deviations O'Iter, O'CPU, respectively. For each (n, n - )  
pair, we randomly generated thirty problems according to the parameters specified 
above. 

Tables 6.1 and 6.2 list the results for the Euclidean attraction and repulsion case: 
q5 (hi  (z) )  = - II z - aJ II, J J1 u J2. These table s include all of the (n, n -  ) 
combinations of Tables 5 and 6 in [9]. 

Because the points were uniformly distributed on the  square and the attraction 
and repulsion forces are both functions of Euclidean distances, the solution point 

is very close to the center (1/2, 1/2) when n-/n<l/2  and it is very close 
to a vertex of the unit square otherwise. Thus, the problem is most difficult when 
n- /n  = 1/2 and becomes considerably easier when n- /n  > 1/2. This is reflected 
by the sharp drop in the run times in the latter case. An intuitive explanation for 
this behavior is the following. When n-In > 1/2, the repulsion force exceeds the 
attraction force and pushes the solution to the boundary. Since the repulsion force 
diminishes with distance, the expected repulsion to the comers is less than that to 
other boundary points. Thus all four corners are good solutions for n large. When 
n-In<l/2, the attraction forces control the solution. If we view the location of 
the facility as fixed and the locations of the points as random, then the distances 
from the points to the facility are random variables and the minimum total expected 
distance will occur if the fixed point is in the center. Asymptotically, as n ~ c~, 
the actual behavior should be close to the expected behavior. 

We note that our procedure does not a priori exploit the knowledge of where 
the solution is likely to be. In order to show that our algorithm does not favor 
problems with center solutions, we generated user points as follows: one half of 
the total points are generated uniformly in (0, 0.5) x (0, 0.5), and the others are in 
(0, 1) x (0, 1). The results are exhibited in Table 6.3. Notice that the run times are 
comparable to those in Table 6.1, while the solution points were not in the center 
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Table 6.1. Computational results for 100 < n < 500 points 

100 10 
100 20 
100 30 
100 40 
100 50 

100 75 
200 10 
200 20 
200 30 

200 40 
200 50 
200 60 

200 80 
200 100 
200 150 

500 10 
500 20 

500 30 

500 40 
500 50 

500 100 

500 150 
500 200 

500 250 
500 375 

~I~r (Tier 

57.27 20.88 

77.70 22.24 
112.53 44.74 
180.13 64.76 
165.87 154.13 

8.67 1.21 
42.20 11.92 

55.60 11.83 
67.13 16.33 

81.17 18.21 

91.47 25.26 
106.67 34.57 
188.40 53.69 
245.30 151.64 

9.07 0.78 
43.70 12.21 

46.40 13.75 
47.40 10.70 

49.97 13.56 
56.43 12.69 
81.30 21.91 

106.30 38.88 
214.83 74.23 
338.07 214.20 

9.70 0.70 

/.~CPU O'CPU 

0.62 0.22 
0.86 0.24 
1.28 0.53 
2.10 0.79 
2.00 1.96 

0.11 0.02 

0.71 0.19 
0.92 0.20 
1.11 0.27 

1.34 0.30 

1.52 0.42 
1.78 0.58 
3.22 0.94 
4.28 2.68 
0.18 0.02 

1.48 0.41 
1.57 0.46 

1.60 0.35 

1.66 0.43 
1.91 0.42 

2.76 0.74 
3.62 1.31 
7.37 2.56 

11.83 7.61 
0.37 0.03 

of the square when n - / n <  1/2. As expected, even for these problems, the comers 
solved the problems when n - / n  > 1/2. 

Our approach allows the incorporation of more general attraction and repulsion 
functions. Table 6.4 exhibits the results for the exponential attraction and repulsion 

case: q j (h j ( x ) )  = w j e  -~ j E 3"1 U J2. Note that the run times are from 
3 to 5 times longer, on average, than the Euclidean case in Table 6.1. This is due 
to the increased number of linear functions needed to approximate the convex 
exponential functions. 

We also tested the procedure on the mixed case: q j (h j ( x ) )  = a j  - .:sllx - 

as II, J J1, and qj (hs (x ) )  = wj e -~ , j E ,12. Table 6.5 exhibits the results. 
Note that when n - / n <  1/2, the run times are comparable to the all Euclidean case 
in Table 6.1. However, when n - I n  > 1/2, the run times are comparable to the all 
exponential case in Table 6.4. This suggests that the solution difficulty is governed 
by the distance measure of the dominant points. 
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Table 6.2. Computational results for 1,000 < n 
n n--  

1,000 10 35.87 
1,000 20 40.43 
1,000 40 47.13 
1,000 50 50.03 
1,000 100 54.80 
1,000 200 79.07 
1,000 250 88.30 
1,000 300 99.10 
1,000 400 210.43 
1,000 500 367.30 
1,000 750 9.70 
5,000 10 34.13 
5,000 50 37.33 
5,000 100 40.93 
5,000 500 55.20 
5,000 1,000 83.57 
5,000 1,500 105.67 
5,000 2,000 234.80 
5,000 2,500 609.60 
5,000 3,750 10.03 

10,000 10 29.60 
10,000 50 29.97 
10,000 100 34.63 
10,000 500 49.40 
10,000 1,000 54.50 
10,000 2,000 89.07 
10,000 5,000 967.70 
10,000 7,500 9.93 

100,000 1,000 33.20 

< 100, 000 points 

~Iter O'Iter ~CPU O'CPU 

9.93 
12.96 
9.86 
9.71 

13.50 
21.70 
19.62 
21.00 
38.39 

195.09 
0.70 

11.12 
7.82 
7.86 

11.57 
20.90 
25.08 
57.44 

237.81 
0.72 

11.29 
8.43 
9.33 

10.65 
9.28 

28.19 
546.97 

0.64 
8.33 

2.28 
2.56 
2.97 
3.15 
3.46 
4.96 

5.55 
6.21 

13.23 
23.53 

0.68 
10.12 
11.00 
12.05 
16.12 
24.37 
30.66 
67.97 

178.59 
3.20 

17.46 
17.61 
20.30 
28.69 
31.54 
51.16 

556.89 
6.26 

192.38 

0.61 
0.81 
0.61 
0.60 
0.83 
1.33 
1.23 
1.30 
2.42 

12.60 
0.05 
3.20 
2.25 
2.25 
3.31 
6.04 
7.23 

16.49 
69.52 

0.21 
6.44 
4.81 
5.30 
6.10 
5.26 

16.06 
313.91 

0.36 
46.82 

Table 6.3. Computational results for different user points strucutre 

n r~- /Zlter 
100 10 71.03 
100 20 87.67 
100 50 165.53 
100 75 6.60 
500 50 50.30 
500 100 106.13 
500 250 389.00 
500 375 6.30 

O'Iter 

21.53 
24.89 
98.97 

1.71 
28.72 
22.87 

257.80 
0.47 

/-~CPU 

0.78 
0.98 
1.96 
0.09 
1.72 
3.60 

13.55 
0.26 

O'CPU 

0.24 
0.28 
1.19 
0.03 
0.95 
0.78 
9.13 
0.02 
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Table 6.4. Computational results for 

7"/, n - -  

100 10 
100 20 
100 80 
200 20 
200 40 

200 150 
500 50 
500 100 
500 400 

/s triter 

286.77 102.30 
328.13 110.82 

42.20 10.00 
259.13 78.69 
326.63 103.31 

57.07 13.89 
300.03 81.42 
398.53 109.82 

49.57 7.45 

exponential functions 

~cPo crcPu 

3.67 1.36 
4.26 1.49 
0.57 0.13 
5.07 1.58 
6.48 2.09 

1.17 0.28 
12.14 3.32 
16.32 4.60 

2.13 0.32 

Table 6.5. Computational results for mixed functions 

n 7"/,-- ~Iter O'Iter ftCPU O'CTU 

100 10 66.17 21.21 0.73 0.23 
100 20 78.77 23.25 0.88 0.26 

100 80 58.07 16.03 0.75 0.21 

200 20 59.03 17.82 1.00 0.29 
200 40 85.93 22.47 1.48 0.39 

200 150 1 2 8 . 3 7  60.93 2.55 1.24 
500 50 66.03 16.42 2.28 0.56 

500 100 82.30 15.56 2.95 0.56 
500 400 75.07 15.58 3.29 0.67 

From the above tables, we can see that the CPU time depends on the total 
number of points n and the ratio n - I n .  When n is fixed, more repulsion points will 
increase the CPU time until n = 2 n - .  When n - / n  is fixed, the average number of  
iterations is almost the same for all cases, while the CPU time increases with n. 

7. Extensions 

In this section we briefly report on the extension of our problem (P) to more general 
location problems; namely, limited distance and conditional location problems ([ 1 ], 
[3], [4]). These location problems can be formulated as 

max ~ F' (x )  = ~. ,  qj[dj(x)] - E qj[dj(x)] " x E M I , (P') 
JEJ1 jeJ2 ] 

where di (x  ) = min{ h j (x )  = Ilx - aJll, dJ }. 
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Table 7.1. Computational results for limited distance location problems 
n n- -  

50 10 
50 20 
50 25 
50 30 

100 10 
100 20 
100 30 
100 40 
100 50 
100 80 
500 50 
500 100 
500 200 
500 250 
500 400 

~Iter O'CPU 

163.60 
155.90 
166.63 
145.17 
183.90 
196.27 
209.47 
213.40 
272.27 
130.93 
326.23 
365.90 
521.87 
556.30 
129.10 

O'Iter ~CPU 

69.66 1.82 
51.54 1.70 
61.25 1.83 
53.85 1.61 
60.19 2.59 
66.53 2.73 
69.87 2.89 
57.17 2.93 
90.38 3.88 
40.89 1.76 
80.62 12.80 

101.74 14.53 
155.53 21.34 
152.82 22.61 
13.45 5.02 

0.93 
0.62 
0.77 
0.69 
0.94 
1.10 
1.12 
0.91 
1.46 
0.60 
3.33 
4.34 
6.92 
6.64 
0.53 

Table 7.2. Computational results for conditional location problems 
n n _  

50 10 159.33 
50 20 202.37 
50 25 228.87 
50 30 223.53 

100 10 196.13 
100 20 216.40 
100 30 241.37 
100 40 285.17 
100 50 323.73 
100 80 420.70 
500 50 251.30 
500 100 327.37 
500 200 569.00 
500 250 879.03 
500 400 636.57 

~Iter O'Iter #CPu O"CPU 

68.87 
56.11 
81.19 
85.92 
74.56 
79.82 
89.30 
92.53 

129.41 
192.31 
71.74 
99.99 

208.26 
267.94 
109.61 

1.68 
2.18 
2.53 
2.50 
2.72 
3.05 
3.45 
4.15 
4.81 
6.96 
9.80 

12.98 
23.57 
37.48 
26.90 

0.83 
0.70 
1.02 
1.09 
1.20 
1.28 
1.45 
1.54 
2.26 
4.24 
2.89 
4.23 
9.53 

12.71 
5.29 

For the limited case, d j > 0 (j E J1 t2 J2) is a given constant. For the conditional 

case, d j = m i n { l l Y  i - aYll : i = 1 , 2 , . . .  , m } ,  where yi (i = 1 , . . .  , m )  are given 
points at which existing facilities are located. 

For  these problems we can prove the following result. 
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LEMMA 5. Let h(x) = [Ix - all, d(x) = min{h(x),  d}, where d > 0 is constant. 
I f  q : R+ --+ R is a convex nonincreasing function such that q+(0) > -oo ,  then 
q[d( x ) ] can be expressed as the d.c. function: 

q[d(x)] = g(x) - Ch(x) ,  

where g (x) is a convex function and C is a positive constant satisfying C_>lq + (0) l. 

Hence, we can extend our algorithm to limited distance and conditional location 
problems. Below we report on our preliminary computational experience with these 
models. 

Table 7.1 exhibits the results for limited distance location problems with the d j 
(j = 1 , . . . ,  n) generated uniformly in (0.25, 0.5). Note that when n - / n  < 1/2, 
the run times are within 25% (lower and higher) of the times for the all exponential 
case in Table 6.4. However, when n - / n  > 1/2, the run times are 2 to 4 times 
longer than the all exponential case. For these latter problems, even though they 
still exhibit near comer solutions, the problem is more difficult than the unlimited 
distance location case. This can be explained as follows. When iterates are far 
away from users near the optimal location, the attraction force is constant for those 
users and stronger for users near the current iterate. A similar statement can be 
made for repulsion forces. Thus more iterations are needed to approach the region 
of attraction of the optimal solution. Note that problems with small d j values take 
longer to solve. We report the results for the conditional location problems in Table 
7.2. In this case, we choose m = 5 and the existing facilities points are selected 
uniformly from (0, 1) x (0, 1). Note that when n - / n  < 1/2, the run times are 
within 60% (mostly higher) of the run times for the limited distance case in Table 
7.1. However, when n - / n  > 1/2, the run times are from 50% to 5 times longer 
than the limited distance case. It appears then that the most difficult problem for our 
algorithm is the conditional location problem. This can be explained by the fact that 
the constants d j, which depend on randomly generated points yi (i = 1 , . . . ,  m),  
were smaller, on average, than those in Table 7.1. 

8. Concluding Remarks 

In this paper, we proposed a general algorithm for solving single facility location 
problems using d.c. optimization. The procedure was implemented and tested 
on several thousand problems and the details of these experiments are reported 
above. We demonstrated that the procedure is robust with respect to the location 
of the optimal solution and can handle more general objective functions than 
Euclidean distances. We also extended the procedure to solve limited distance and 
conditional location problems, and conclude from our computational experience 
that conditional location problems are the most difficult to solve. Finally, because 
our procedure generates upper bounds, we can imbed it in a search procedure for 
locating the single facility in the union of a finite number of convex polygons in 
the spirit of Chen et al. [2]. 
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Appendix: Computation of Subgradients 

The above algorithm involves in Step 3c the computation of  a vector p k E OH(xk), 
where, for Cj_> - q+ (0) > 0, we have 

H(x) = ~ gj(x) + ~ Cjhj(x),  
jeJ2 jEJI 

gj(x) = qj[hj(x)] + Cjhj(x), 

so that 

H(x) = ~ {qj[hj(x)] +Cjh j (x )}  + ~ Cjhj(x). 
jEJ2 j eJ l  

In this Appendix we discuss how to compute this subgradient. Below, we use 
the notation (x, y) for inner product xTy between two vectors x and y. 

L E M M A  6. A subgradient of the function h( x ) = I Ix - a l l  at point x ~ is the vector 

X 0 - -  a 

IIx~ all 
0 

i f  x 0 ~ a, 

if x ~ = a. 

Proof. If x ~ r a then the function h(x) is differentiable at x ~ so its subgradient 
at x ~ is just  its gradient at this point, s ince  h2(x) = (Xl - a l )  2 + (x2 - a2) 2, we 

X 0 -- ai 
have, f o r / =  1,2, 2h(x~ 0h--~ax, = 2 ( x ~  "Hence ~ - ~-(xO~ , andso  

x ~ - a 
V h ( x ~  -- I Ix~ - a l l "  

If x ~ ---- a, then h(a) = 0, so h(x) - h(a) = h(x)>_O Vx, and hence, h ( x ) -  
h(a)>_(0, x - a) Vx. This implies that the vector 0 is a subgradient of  h(x) at 
a (0 e Oh(a)). [] 

L E M M A  7. Let q : R+ --* R be a convex nonincreasing function such that 
q+(0) > -cx), and let g(x) = q[h(x)] + Ch(x) where Cr If  Tr E Oh(x~ 
then 

[q+(h(x~ + C]Tr e Og(x ~ 

where q+(t) denotes, as usual, the right derivative of q(t) at t. 
Proof. Let to = h(x~ By convexity of  the function ~(t) = q(t) + Ct (see 

the proof  of  Lemma 1), we have ~+(to)( t  - to) _< ~(t) - ~(to) Vt, i.e. (q+(to) + 
C) ( t -  to) < (q (t) + Ct) - (q (to) + Cto),  Vt. Hence,  letting t = h(x) ,  we obtain 

[q+(h(x~ + C](h(x) - h(x~ - g(x ~ Yx. (4) 
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But, 7r E Oh(x ~ implies that 

(Tr, x - x ~  - h(x~ 
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and since q+(h(x~ + C>q+(0)  + C>0 ,  we have 

[q+(h(x~ + C](Tr, x - x~176 + C](h(x)  - h(x~ 

This, together with (4), yields 

([q+(h(x~ + Clsr, x - x~  - g(x  ~ Vx, 

as was to be proved. [] 

EXAMPLE I. If q(t) = a - wt,  with w > 0, then for C > w ,  a subgradient of the 
funct ion g ( x )  = q(llx - all) + C I I x  - all at POint x ~ ~ M is 

( C - w )  x ~  
P =  i ixO_al  I i f x  ~  

0 if x ~ = a. 

EXAMPLE II. If q(t) = w e -~ with w > 0 and 0 > 0, then for C>Ow, a 
subgradient of the function g(x)  = w e -~ + CIIx- all at point x ~ E M is 

X 0 - -  a 

P _-- [ C  - 0 w e  - 0 l l x ~  IIx~ al l  

0 

if x ~ r a, 

if x ~ = a. 

LEMMA 8. Let U(x),  V ( x )  be convex functions and A(x )  = U(x)  + V (x ) .  I f  
p = u + v, with u E OU(x~ v E OV(x~ then p E OA(x~ 

Proof. Immediate. [] 

Using the above results it is easy to compute a subgradient of H ( x )  at x ~ E M if, 
for every j ,  h i (x )  = IIx - aJl l  and qj(t) is as in Example I or II. For instance: 

PROPOSITION 3. Assume that for  every j : h i (x )  = IIx - aJ l l ,  while qj(t) = 
a j  - w i t  with wj  > O. Then a subgradient o f  H ( x )  at x ~ is 

p = 
x 0 --  a j x 0 - -  a J  

E [cj - + F,  cj 
j~s~nN(xO) IIx~ -- aJll IIx~ -- aJ l l '  j E J I M N ( x  O) 

where N ( x  ~ = { j  : x ~ # aJ}. 
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PROPOSITION 4. Assume that for  every j : h i ( x )  = IIx - aJll ,  while qj( t )  = 
wj  e -Ojt with wj  > 0 and Oj > 0 is the rate o f  decay o f  its attraction. Then a 
subgradient o f  H ( z )  at x ~ is 

p = 
x 0 _ a j 

[Cj - Ojwje -05[[xO-ajll] IIz~ aJll 
jEJ2ON(z ~ 

x o _ a j 

x-,2_, c j  IIx~ - aJll" 
+ 

jEJlf3N(x O) 

REMARK. In some models,  polyhedral  gauges are used instead of  the Euclidean 
norlI1. 

Let  h(x)  = ~ ( x  - a),  where qa(x) is a polyhedral  gauge, i.e. a nonnegative- 
valued function of  the form ~(x )  = maxi~z (c i, x}, III < such  that B = {x : 
~ (x )  < 1 } is a polytope containing 0 in its interior. It can be proved that 0 E Oh(a), 
while for x ~ a, we have Oh(x) = conv{c i"  h(x)  = (c i, x - a)}. 
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