
Journal of Global Optimization 7: 209-227, 1995. 209
�9 1995 Kluwer Academic Publishers. Printed in the Netherlands.

A D.C. Optimization Method for Single Facility
Location Problems*

HOANG TUY 1 , FAIZ AL-KHAYYAL 2 and FANGJUN ZHOU 2
l lnstitute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam;
2School of lndustrial and Systems Engineering, Georgia Institute of Technology Atlanta, GA 30332,
U.S.A. e-mail:faiz@isye, gatech.edu

(Received: 16 January 1995; accepted: 28 April 1995)

Abstract. The single facility location problem with general attraction and repulsion functions is
considered. An algorithm based on a representation of the objective function as the difference of two
convex (d.c.) functions is proposed. Convergence to a global solution of the problem is proven and
extensive computational experience with an implementation of the procedure is reported for up to
I00,000 points. The procedure is also extended to solve conditional and limited distance location
problems. We report on limited computational experiments on these extensions.

Key words: Facility location, d.c optimization, global optimization, nondifferentiable optimiza-
tion.

1. Introduction

The origins of location theory can be traced to Fermat's challenge, in his 17th
century essay on maxima and minima, to find a point in the plane such that the sum
of its distances to three given points is a minimum. The problem and its general-
ization to weighted sums of distances remained in the province of mathematicians
until the early 20th century when Weber [20] used the theory for the location of
industries. Today, the simplest version of Weber's problem (sometimes called the
Fermat-Weber problem) is to locate a single facility in the plane that minimizes
the sum of weighted Euclidean distances to the locations of n known users. The
historical developments and many contributions to the problem and its extensions
are, well documented in the literature (see, e.g., Love et al. [8]).

When all of the weights are positive, the objective function is convex and
the problem is easily solved by an iterative procedure proposed by Weiszfeld
[21]. The problem becomes much harder when some of the weights are taken to
be negative. In this case, when minimizing the objective function, users having
positive weights are attracted to the facility and those having negative weights
are repelled by the facility. For example, a neighborhood school or civic center is
attractive to most residents of a community, but those with contiguous properties
may understandably object because of increased noise and traffic, and decreased

* This research was supported in part by the National Science Foundation Grant DDM-91-14489.

2 1 0 HOANG TUY ET AL.

residential property values. The first exact algorithm for finding a global solution
to the general problem was proposed by Chen et al. [2]. The procedure exploited
recent results from d.c. programming and was implemented to solve randomly
generated problems with up to 1000 users. In addition, Chen et al. [2] extend their
procedure to exponentially decaying repulsion and to constraining the facility to be
located in one of a finite number of disjoint convex polygons. In further extensions
to their work, Chen et al. [3] propose exact procedures for the multisource Weber
problem, the conditional multisource Weber problem, and the limited distance
location problem (see Section 7 below for definitions of these problems). Recently,
Maranas and Floudas [9] developed a procedure for locating a single facility in
a rectangle, containing all users, that directly exploits the problem structure. The
authors report computational results on solving randomly generated problems with
up to 10,000 users.

The location problems discussed above were all variations and extensions of
the classical Weber problem. Generalizations to the Weber problem give rise to
harder problems that capture more applications. One such problem was considered
by Idrissi et al. [7] involving the maximization of the sum of decreasing con-
vex functions of arbitrary distance metrics. The problem is formulated only for
attraction points, but each user can have a different metric which need not be sym-
metric, so that both norms and gauges are possible. Idrissi et al. [7] develop a pro-
cedure based on solving a sequence of parameterized Weber problems for find-
ing a local solution to the problem. Tuy and A1-Khayyal [18] proposed the first
algorithm for finding global solutions to the problem by reducing it to the
solution of a sequence of unconstrained nondifferentiable convex minimization
problems and specializing a polyhedral annexation procedure for the case when
the distance metric is a polyhedral norm. Computational results were not
reported.

In this paper we extend the work of Tuy and A1-Khayyal [18] to the case of
both attraction and repulsion, and develop an entirely new procedure based on
a d.c. reformulation of the problem. We implement our procedure and report on
computational experiments on more than three-thousand randomly generated test
problems. We also discuss extensions of the basic procedure to limited distance
and conditional location problems. The remainder of the paper is organized as
follows. The problem under consideration is formally presented in Section 2 and
its d.c. reformulation is described in Section 3. The global optimization algorithm
is presented in Section 4 and its convergence is treated in Section 5. The results of
computational experiments on test problems with up to 100,000 users are reported
in Section 6. Extensions to the limited distance and conditional location problems
are discussed in Section 7, including computational results on these problems. We
also include an appendix on how to compute the subgradients called for by the
procedure. In the interest of brevity, the remainder of the paper assumes a basic
knowledge of the fundamental concepts in deterministic global optimization as
detailed in Horst and Tuy [6].

A D.C. OPTIMIZATION METHOD 211

2. Facility Location in the Presence of Attraction and Repulsion

The following problem has been studied in [7] and [18]:
A facility must be constructed in some area M in the plane (a convex polygon

in R 2) to serve n users located at points aJ E M. If the facility is located at x E M,
then the attraction of the facility to user j is qj(hj(x)), where hi(x) = IIx - a j II is
the distance from x to aJ and qj : R+ ~ R+ is a convex decreasing function (the
farther x is away from a j the less attractive it looks to user j). We want to determine
the location of the facility so as to achieve maximal total attraction, i.e.

n

maximize ~ qj[hj(x)] s.t. x E M. (1)
j = l

In this model only attraction points are considered. In practice, aside from
attraction points there may exist repulsion points as well ([5], [2], [9]). For example,
in the presence of garbage dumps, sewage plants, or nuclear plants in the area, one
may wish the facility to be located as far away from these points as possible. If J1
is the set of attraction points and J2 the set of repulsion points, then instead of (1)
one should seek to maximize the function

F(x) := ~ qj[hj(x)]- ~ qj[hj(x)]. (2)
jEJI jeJ2

In typical situations we have

{ O~j --WjliX- aJl] j E J1,
qj[hj(x)] = wje_O&~_,~il I j E J2.

where a j > 0 is the maximal attraction of point j E J1, Oj > 0 is the rate of decay
of the repulsion of point j E J2 and wj > 0 for all j (the classical Weber's problem
corresponds to the case J2 = 0).

Frequently, [[.][is taken to be the usual Euclidean norm, but in the general case,
a different norm or even a gauge function can be associated with each point a i.

Thus the general single facility location problem can be formulated as:

where M is a convex polygon in R 2 and, for every j = 1 , . . . , n, qi : R+ ---. R+ is
a convex decreasing function, while h i : R 2 ~ R+ is a convex function such that
hi (a i) = O, h i (x) > 0 for x # ai and h i (x) --, as Ilxll --' (see [161).

Since the objective function (to be maximized) is not concave, problem (P) is
a nonconvex global optimization problem for which many local maximizers may
exist which are not global solutions. However, under mild assumptions, we will
show in the next section that (2) is in fact a d.c. function, so that (P) is a d.c.

212 HOANG TUY ET AL.

maximization problem over M. Since the dimension of x is small (M C R 2,) this
problem can be solved by recently developed d.c. optimization methods (see e.g.
[16]), even for fairly large values of n.

3. D.C. Reformulation of the Location Problem

In the results below (see [17]), the function q+ (t) represents the right derivative of
q(t) (see [10]).

LEMMA 1. Let h: M ~ R+ be a convex function on a compact convex subset of
R m. I fq : R+ --* R is a convex nonincreasingfunction such that q+(0) > - c o ,
then q[h(x)] can be expressed as the d.c. function on M

q[h(x)] = g(x) - Ch(x) ,

where 9 (x) is a convex function and C is a positive constant satisfying C>_[q + (0)].
Proof. We have q+(O)<_q+(t)<_O Vt_>0, therefore ~(t) = q(t) + Ct satisfies

(t+(t) = q+(t) + C>_q+(O) + C>_O Vt_>0, which implies that the convex func-
tion ~ is nondecreasing. For any x, x ~, c~ E [0, 1] we then have ~[h(ax + (1 -
a)x')]<(l[ah(x) + (1 - a)h (x ')]<a(l [h (x)] + (1 - a)~[h(x ')] . Consequently, the
function g(x) := ~[h(x)] is convex and 9(x) = q[h(x)] + Ch(x) , as was to be
proved. []

LEMMA 2. Let h: M --* R+ be a convex function on a compact convex subset of
R m. I fq : R+ --+ R is a concave nondecreasingfunction such that q+(0) < co,
then q[h(x)] can be expressed as the d.c. function on M

q[h(x)] = 9(x) + Ch(x) ,

where g(x) is a concave function and C is a positive constant satisfying C > l q + (0) 1.

PROPOSITION 1. Assume

q+(O) > - c o Vj.

Then the function F (x) defined by (2) can be expressed as:

F (x) = G (x) - g (x) ,

with G(x) and H (x) being convex functions defined by

C(x) := Z gj(x) + c hj(x)
jeJ1 jEJ2

H(x) := ~ gj(x) + ~ Cjhj (x)
jEJ2 jEJ1

gj(x) = qj[hj(x)] + C j h j (x) , j = 1 , . . . , n .

(3)

A D.C. OPTIMIZATION METHOD 213

and Cj being constants satisfying Cj>lq + (0)l.
Proof. By Lemma 1,

F(x)=[~-~gj(x)+~'~Cjhj(x)]-[~-~gj(x)+ECjhj(x)] ' I j E J 1 jEJ2 IjEJ2 jEJI

whence the result. []

Thus problem (P) can be rewritten as the d.c. maximization problem:

max{G(x) - H (x) : x ~ M}. (Q)

REMARK. The single facility location problem also has the equivalent cost
formulation

min{j~qj[hj(x)]-jeJ2~--~qj[hj(x)]" x E M } ,

where each qj is now a concave increasing function.

4. A D.C. Maximization Algorithm

Several methods are available for solving the d.c. maximization problem (Q) (see
[6], [16] and references therein). For instance, one can convert (Q) into the convex
maximization problem [6]

max{G(x) - t : H(x)<t, x E M}
and solve the latter by outer approximation (see e.g. [2]). Alternatively, one can
solve (Q) by a branch and bound method using rectangular subdivision as in
[9]. However, the outer approximation method needs an additional variable t,
while a rectangular branch and bound method would require for bounding the
computation of a concave envelope of G(x) - H(x) over each rectangle (recall
that this is a maximization problem), and has to use a non-adaptive exhaustive
subdivision process defined independently of the problem conditions at every
current iteration. In addition, both methods assume special forms of the functions
qj(.),j= l,...,n.

To better exploit the structure of (Q), in the sequel we propose to solve (Q) using
a triangular branch and bound method in which upper bounds are computed as in
([15]) (see also [16] (Section 9.1.1, Remark (ii)), while branching follows a normal
triangular subdivision scheme [15] (see also [6]). The bounding and subdivision
operations of the procedure are explained below before the formal presentation of
the algorithm.

I. Bound computation. At iteration k of the procedure we have in hand a
convex piecewise affine minorant Lk(x) with IIkl linear pieces li(x) resulting

214 HOANO TUY ETAL.

from the previous iterations. For each newly generated triangle S, let Gs(x) be
the affine function that agrees with G(x) at the vertices of S (because of the
convexity of G(x), Gs(x) is a majorant of G(x) on S), Then an upper bound for
max{G(x) - H(x) : x E S fq M} is given by the optimal value of the linear
program

LP(Lk, S) a(S) := max{Gs(x) - t : l~(x)<t (i EIk) , x E S M M }

where li (x) are linear functions such that, for every k, {x E S : li(x) <t, i E Ik } D_
{x E S : H(x)<t} . The latter program is equivalent to max{Gs(x) - Lk(x) :
x e S n M } .

The bound computed as above depends upon the function Lk(x) used for
underestimating H(x) on S. To ensure asymptotic exactness (consistency) of this
bound, the underestimator Lk (x) must be refined at each iteration k. The refinement
is achieved by computing, at each iteration k, a linearization lk (x) of H(x) at an
appropriate point x k and defining Lk+l (X) = sup{Lk(X), lk(x) }. The point x k,
at which the linearization lk(x) of H(x) should be constructed, is a basic optimal
solution of the linear program LP(Lk, Sk) associated with the most promising
triangle Sk at this stage. We prove later that this will ensure convergence of the
sequence H(x k) - Lk(x k) ~ O.

As a linearization of H(x) at x k we take

lk(X) = (pk, x -- x k) + g (xk) ,

where plr is a subgradient of H(x) at x k. Although H(x) results from the compo-
sitions of a number of functions, a subgradient of it at any point can be computed
easily (see Appendix for the details of this computation).

II. Subdivision. Given any triangle S, and a point y E S which is not a vertex
of S, we can join y to the vertices of S to define a radial subdivision of S in
subtriangles. When y is the midpoint of the longest side of S the subdivision is
called a bisection. A basic result of the theory of simplicial subdivision processes
is the following [13].

PROPOSITION 2. Let {S~,} be a nested sequence of m-simplices in R m and for
each v let x v be any point in S~. Assume that

(1) For infinitely many v, Sv+l is a subsimplex of Sv in a bisection;
(2) For all other v's, Sv+l is a subsimplex of Sv in a radial subdivision via x V.

Then at least one cluster point of the sequence {x v} is a vertex of the simplex
O0 S V ~ Soo = n v = 1

Now in the proposed branch and bound algorithm, at every iteration k a triangle
Sk is selected which must be further subdivided. As Sk should be in a sense the
most promising among the triangles still of interest in the current partition, we

A D.C. OPTIMIZATION METHOD 215

choose Sk to be the triangle S with maximal a(S) , among all mentioned triangles.
Let x k be a basic optimal solution of the linear program LP(Lk, Sk) used for
computing the upper bound a(Sk). Then, from the definition of LP(Lk, Sk) and
the fact a(Sk)ea(S) for all triangles S in the current partition we can easily see
that

Gs~(x k) - Lk(xk)>_G(x) - Lk(x)>G(x) - H(x) Vx E M.

Therefore, if x k is a vertex of Sk (so that Gs~(x k) = G(xk)) and if Lk(x k) =
H(xk) , then the above inequality shows that x ~ is an optimal solution of (Q) and
the algorithm terminates. Thus, the algorithm is continued only in either of the
following situations:

(1) x k is not a vertex of Sk;
(2) x k is a vertex of Sk while Lk(x k) < H(xk) .

Furthermore, the above considerations suggest that the algorithm should try to bring
x k closer and closer to a vertex of Sk, while reducing the difference H (x k) - L k (x k)
to zero (the latter fact can be ensured by an appropriate selection of the sequence
Lk(')). On the basis of Proposition 4 we can ensure that x k comes closer and closer
to a vertex of Sk by generating a subdivision process such that: at every iteration
k, Sk is either bisected, or is radially subdivided via x k, while any infinite nested
sequence of triangles generated by the subdivision process involves infinitely many
bisections. A subdivision process satisfying this condition is called normal.

Practically, to generate a normal subdivision process, every triangle S generated
during the process is assigned a generation index T(S) such that any initial triangle
S (triangles of first generation) has index T(S) = 1, and every son S' of a triangle S
has index T(S') = T(S) + 1. Then for any (arbitrary) infinitely increasing sequence
A of natural numbers, we seek to

bisect Sk i l k E A, and subdivide Sk via x k, otherwise.

The normality of such a rule is immediate. It is also obvious that the sequence
A expresses how often we use bisections in the subdivision process.

The proposed algorithm can now be described as follows.

Algorithm
Step 0. Start with a set S1 of triangles covering M or a region known to
contain at least a global optimal solution (e.g. take $1 = {$1}, where $1 is
a triangle containing M) , together with a point x ~ E M, the best feasible
point available. Let lo(x) = (pO, x - x ~ + H(x~ where p0 E OH(x~ Set
L1 (x) = lo(x), 5: = x ~ 7 = G(~) - H(~) , ~r~ 1 ~-- ~ 1 = Sl, T(S) = 1 for
every S 6 S1. Set k = 1.

Step 1. For each S E 7~k, solve the linear program LP(Lk, S) to obtain the
optimal value a(S) and a basic optimal solution x(S).

216 HOANG TUY ET AL.

Step 2. Update Z and 7. Delete every S �9 Sk such that o~(S)<,), and let ~Ir be
the set of remaining simplices. If ~ k = 0, then terminate: :~ solves (Q).

Step 3. Select Sk �9 argmax{o~(S) : S �9 ~k}. Let x k = x(Sk), t k = Lk(xk).
3a. If t k = H (x k) and x k is a vertex of Sk then terminate: x k solves

(Q).
3b. I f t k = H (x k) andx k isnot avertexofStr thenset Lk+l (x) = Lk(x).
3c. Otherwise, define lk (x) = (pk, x -- x k) + H (x k) with pk �9 O H (x k)

and let Lk+l(x) = sup{L/c(x),/k(x)}.

Step 4. Bisect Sk or subdivide Sk via x to, according to a normal rule.

Let 7~k+1 be the partition of Sk. Set T(S) = T(Sk) + 1 for every S �9 T~k+l,
Sk+l = (7~k \ {Sk}) U 7~k+1, k ~-- k + 1 and go back to Step 1.

REMARK. The sequence A in the normal subdivision rule can be chosen once at
the beginning. For example we can take a natural number N (typically N = 5 as
in many computational experiments with branch and bound algorithms of concave
minimization) and define A = {N, 2N, 3 N , . . . , } (sequence of multiples of N).
Alternatively, since theoretically A can be arbitrary, a more efficient strategy may
be to define the elements of A one by one, as needed, in the course of the algorithm,
and use A to monitor, to some extent, the speed of convergence of the algorithm.
In general, one may try to use as many subdivisions via x k as possible, and have
recourse to a bisection when the algorithm seems to slow down.

5. Convergence

If the algorithm terminates at Step 3a then Lk(x k) = H (x k) (because t k =
Lk(xk)), while Gs~(x k) = G(x k) and, as we saw above, x k is indeed a global
optimal solution of (Q).

Suppose now that the algorithm is infinite, so that an infinite sequence {x k } is
generated. Write Gk(x) for Gsk (x).

LEMMA 3. There exists a subsequence x kV --+ :c such that Gkv (x k~) --* G(Sc).
Proof. By a standard argument, the algorithm, if infinite, must generate at least

an infinite sequence of nested triangles. Let (S ~ } be such a sequence. Since the
subdivision process is normal, by Proposition 4, at least one cluster point of the
sequence {x k~ } coincides with a vertex ~ of the limit triangle S ~ = Nu Sk~. By tak-
ing a subsequence if necessary, we can assume that x k~ ~ ~c. Let v k,i, i = 1,2, 3,
be the vertices of Sk, so that x ~ 3 3 = ~,i=1 ~k,i v~'i with ~k,i>O, ~ i = l)~k,i = 1,
and Gk(x k) 3 = ~i=1/~k,iG(vk'i) �9 We may assume v k~'i ~ ~z,i = 1,2,3, so
that S ~ is the convex hull of V 1, ~2, V3. Since :~ is a vertex of S ~ we have

E {~1, V2, ~3}, for instance, :~ = ~1, i.e. v k~,l ~ 5c. The latter fact implies that,
by taking a subsequence if necessary, Ak~,l ---* 1,)~k~,i ~ 0 (i # 1), and hence,

A D.C. OPTIMIZATION METHOD 217

[]

LEMMA 4. For any subsequence x k~ --, 5c we have Lk~ (x k~) --* H(~).
Proof. Since the sequence {x k} is bounded, then the sequence {pk} is also

bounded (see [10]). We can, therefore, assume that pk~ ~ p E OH(5c). Now for
u > # we have

H (xk~)>tk~ = Lk~ (xk~)>lk, (x k~) = (pk~,Xk~ -- Xk~) + H(xk").

Letting u ~ oc, we obtain

H(~) > lira sup Lk~ (x k~') > lim inf Lk~, (x k~) >_ (pk~,, 5C -- X k~') + H (x &'),

and letting # --~ c~ yields the desired result. []

Let ~k be the current best feasible solution at iteration k and ~/k = F(s

THEOREM 1. I f the above Algorithm is infinite, then at least one cluster point
of the sequence {x k } is a global optimal solution. Hence, 7k tends to the optimal
value of problem (Q) and any cluster point of the sequence ~k is a global optimal
solution of(Q).

Proof. By Lemmas 2 and 3, there exists a subsequence x k~ ---, ~ such that

ak~(x k~) --* G(&), Kk~(x k~) --* H(&).

Since forevery u, Gk~ (xk~)--Lk~ (x ~) = ak~ (xk~)--tk~ >G(x) - -H(x) Vx E M,
it follows that

G(b) - H (b) > G (x) - H(x) Vx E M.

Therefore, ~ solves (Q). The rest is clear. []

Consequence Given a tolerance e > 0 i f we stop the Algorithm at iteration k such
that

Gk(x ~) tk>7~ - e

then x k is a global e-optimal solution (in the sense that G(x k) - H (x k) e max
{ G (x) - H (z) : x E M} - r

6. Computational Experience

The above method is a branch and bound algorithm in R 2, where branching is by
triangular subdivision and bounding involves solving linear programs LP(L, S) in
only three variables. Computational experience with branch and bound algorithms

218 HOANG TUY El" AL.

for d.c. optimization suggests that such algorithms should be efficient even for
fairly large n.

In the special case of Weber's problem with attraction and repulsion, our branch
and bound algorithm differs from the one in [9] not only in the subdivision method
(triangular rather than rectangular) but also in the subdivision rule (normal rather
than exhaustive).

In order to evaluate the efficiency and robustness of our algorithm, we imple-
mented the procedure in double precision FORTRAN 77 on a SUN SPARC 20
Model 50, rated at 143.2 MIPS, 30.6 MFLOPS, and 78.3 SPECfp92. The user points
are generated randomly from a uniform distribution in the unit square (0, 1) • (0, 1).
The maximal attraction, the rate of decay and weight for each point are selected
from a uniform distribution in (0, 30), (0, 3) and (0, 2), respectively. We set the
convergence tolerance to e = 10 -5 and use E04MBF in the NAG library as our LP
solver.

In the following tables, we report the total number of points n, the number
of repulsion points n - , the average number of iterations #Iter and CPU times
#cl'u, and their standard deviations O'Iter, O'CPU, respectively. For each (n, n -)
pair, we randomly generated thirty problems according to the parameters specified
above.

Tables 6.1 and 6.2 list the results for the Euclidean attraction and repulsion case:
q5 (hi (z)) = - II z - aJ II, J J1 u J2. These table s include all of the (n, n -)
combinations of Tables 5 and 6 in [9].

Because the points were uniformly distributed on the square and the attraction
and repulsion forces are both functions of Euclidean distances, the solution point

is very close to the center (1/2, 1/2) when n-/n<l/2 and it is very close
to a vertex of the unit square otherwise. Thus, the problem is most difficult when
n- /n = 1/2 and becomes considerably easier when n- /n > 1/2. This is reflected
by the sharp drop in the run times in the latter case. An intuitive explanation for
this behavior is the following. When n-In > 1/2, the repulsion force exceeds the
attraction force and pushes the solution to the boundary. Since the repulsion force
diminishes with distance, the expected repulsion to the comers is less than that to
other boundary points. Thus all four corners are good solutions for n large. When
n-In<l/2, the attraction forces control the solution. If we view the location of
the facility as fixed and the locations of the points as random, then the distances
from the points to the facility are random variables and the minimum total expected
distance will occur if the fixed point is in the center. Asymptotically, as n ~ c~,
the actual behavior should be close to the expected behavior.

We note that our procedure does not a priori exploit the knowledge of where
the solution is likely to be. In order to show that our algorithm does not favor
problems with center solutions, we generated user points as follows: one half of
the total points are generated uniformly in (0, 0.5) x (0, 0.5), and the others are in
(0, 1) x (0, 1). The results are exhibited in Table 6.3. Notice that the run times are
comparable to those in Table 6.1, while the solution points were not in the center

A D.C. OPTIMIZATION METHOD 219

Table 6.1. Computational results for 100 < n < 500 points

100 10
100 20
100 30
100 40
100 50

100 75
200 10
200 20
200 30

200 40
200 50
200 60

200 80
200 100
200 150

500 10
500 20

500 30

500 40
500 50

500 100

500 150
500 200

500 250
500 375

~I~r (Tier

57.27 20.88

77.70 22.24
112.53 44.74
180.13 64.76
165.87 154.13

8.67 1.21
42.20 11.92

55.60 11.83
67.13 16.33

81.17 18.21

91.47 25.26
106.67 34.57
188.40 53.69
245.30 151.64

9.07 0.78
43.70 12.21

46.40 13.75
47.40 10.70

49.97 13.56
56.43 12.69
81.30 21.91

106.30 38.88
214.83 74.23
338.07 214.20

9.70 0.70

/.~CPU O'CPU

0.62 0.22
0.86 0.24
1.28 0.53
2.10 0.79
2.00 1.96

0.11 0.02

0.71 0.19
0.92 0.20
1.11 0.27

1.34 0.30

1.52 0.42
1.78 0.58
3.22 0.94
4.28 2.68
0.18 0.02

1.48 0.41
1.57 0.46

1.60 0.35

1.66 0.43
1.91 0.42

2.76 0.74
3.62 1.31
7.37 2.56

11.83 7.61
0.37 0.03

of the square when n - / n < 1/2. As expected, even for these problems, the comers
solved the problems when n - / n > 1/2.

Our approach allows the incorporation of more general attraction and repulsion
functions. Table 6.4 exhibits the results for the exponential attraction and repulsion

case: q j (h j (x)) = w j e -~ j E 3"1 U J2. Note that the run times are from
3 to 5 times longer, on average, than the Euclidean case in Table 6.1. This is due
to the increased number of linear functions needed to approximate the convex
exponential functions.

We also tested the procedure on the mixed case: q j (h j (x)) = a j - .:sllx -

as II, J J1, and qj (hs (x)) = wj e -~ , j E ,12. Table 6.5 exhibits the results.
Note that when n - / n < 1/2, the run times are comparable to the all Euclidean case
in Table 6.1. However, when n - I n > 1/2, the run times are comparable to the all
exponential case in Table 6.4. This suggests that the solution difficulty is governed
by the distance measure of the dominant points.

220 HOANG TUY El" AL.

Table 6.2. Computational results for 1,000 < n
n n--

1,000 10 35.87
1,000 20 40.43
1,000 40 47.13
1,000 50 50.03
1,000 100 54.80
1,000 200 79.07
1,000 250 88.30
1,000 300 99.10
1,000 400 210.43
1,000 500 367.30
1,000 750 9.70
5,000 10 34.13
5,000 50 37.33
5,000 100 40.93
5,000 500 55.20
5,000 1,000 83.57
5,000 1,500 105.67
5,000 2,000 234.80
5,000 2,500 609.60
5,000 3,750 10.03

10,000 10 29.60
10,000 50 29.97
10,000 100 34.63
10,000 500 49.40
10,000 1,000 54.50
10,000 2,000 89.07
10,000 5,000 967.70
10,000 7,500 9.93

100,000 1,000 33.20

< 100, 000 points

~Iter O'Iter ~CPU O'CPU

9.93
12.96
9.86
9.71

13.50
21.70
19.62
21.00
38.39

195.09
0.70

11.12
7.82
7.86

11.57
20.90
25.08
57.44

237.81
0.72

11.29
8.43
9.33

10.65
9.28

28.19
546.97

0.64
8.33

2.28
2.56
2.97
3.15
3.46
4.96

5.55
6.21

13.23
23.53

0.68
10.12
11.00
12.05
16.12
24.37
30.66
67.97

178.59
3.20

17.46
17.61
20.30
28.69
31.54
51.16

556.89
6.26

192.38

0.61
0.81
0.61
0.60
0.83
1.33
1.23
1.30
2.42

12.60
0.05
3.20
2.25
2.25
3.31
6.04
7.23

16.49
69.52

0.21
6.44
4.81
5.30
6.10
5.26

16.06
313.91

0.36
46.82

Table 6.3. Computational results for different user points strucutre

n r~- /Zlter
100 10 71.03
100 20 87.67
100 50 165.53
100 75 6.60
500 50 50.30
500 100 106.13
500 250 389.00
500 375 6.30

O'Iter

21.53
24.89
98.97

1.71
28.72
22.87

257.80
0.47

/-~CPU

0.78
0.98
1.96
0.09
1.72
3.60

13.55
0.26

O'CPU

0.24
0.28
1.19
0.03
0.95
0.78
9.13
0.02

A D.C. OPTIMIZATION METHOD 221

Table 6.4. Computational results for

7"/, n - -

100 10
100 20
100 80
200 20
200 40

200 150
500 50
500 100
500 400

/s triter

286.77 102.30
328.13 110.82

42.20 10.00
259.13 78.69
326.63 103.31

57.07 13.89
300.03 81.42
398.53 109.82

49.57 7.45

exponential functions

~cPo crcPu

3.67 1.36
4.26 1.49
0.57 0.13
5.07 1.58
6.48 2.09

1.17 0.28
12.14 3.32
16.32 4.60

2.13 0.32

Table 6.5. Computational results for mixed functions

n 7"/,-- ~Iter O'Iter ftCPU O'CTU

100 10 66.17 21.21 0.73 0.23
100 20 78.77 23.25 0.88 0.26

100 80 58.07 16.03 0.75 0.21

200 20 59.03 17.82 1.00 0.29
200 40 85.93 22.47 1.48 0.39

200 150 1 2 8 . 3 7 60.93 2.55 1.24
500 50 66.03 16.42 2.28 0.56

500 100 82.30 15.56 2.95 0.56
500 400 75.07 15.58 3.29 0.67

From the above tables, we can see that the CPU time depends on the total
number of points n and the ratio n - I n . When n is fixed, more repulsion points will
increase the CPU time until n = 2 n - . When n - / n is fixed, the average number of
iterations is almost the same for all cases, while the CPU time increases with n.

7. Extensions

In this section we briefly report on the extension of our problem (P) to more general
location problems; namely, limited distance and conditional location problems ([1],
[3], [4]). These location problems can be formulated as

max ~ F' (x) = ~. , qj[dj(x)] - E qj[dj(x)] " x E M I , (P')
JEJ1 jeJ2]

where di (x) = min{ h j (x) = Ilx - aJll, dJ }.

222 HOANG TUY ET AL.

Table 7.1. Computational results for limited distance location problems
n n- -

50 10
50 20
50 25
50 30

100 10
100 20
100 30
100 40
100 50
100 80
500 50
500 100
500 200
500 250
500 400

~Iter O'CPU

163.60
155.90
166.63
145.17
183.90
196.27
209.47
213.40
272.27
130.93
326.23
365.90
521.87
556.30
129.10

O'Iter ~CPU

69.66 1.82
51.54 1.70
61.25 1.83
53.85 1.61
60.19 2.59
66.53 2.73
69.87 2.89
57.17 2.93
90.38 3.88
40.89 1.76
80.62 12.80

101.74 14.53
155.53 21.34
152.82 22.61
13.45 5.02

0.93
0.62
0.77
0.69
0.94
1.10
1.12
0.91
1.46
0.60
3.33
4.34
6.92
6.64
0.53

Table 7.2. Computational results for conditional location problems
n n _

50 10 159.33
50 20 202.37
50 25 228.87
50 30 223.53

100 10 196.13
100 20 216.40
100 30 241.37
100 40 285.17
100 50 323.73
100 80 420.70
500 50 251.30
500 100 327.37
500 200 569.00
500 250 879.03
500 400 636.57

~Iter O'Iter #CPu O"CPU

68.87
56.11
81.19
85.92
74.56
79.82
89.30
92.53

129.41
192.31
71.74
99.99

208.26
267.94
109.61

1.68
2.18
2.53
2.50
2.72
3.05
3.45
4.15
4.81
6.96
9.80

12.98
23.57
37.48
26.90

0.83
0.70
1.02
1.09
1.20
1.28
1.45
1.54
2.26
4.24
2.89
4.23
9.53

12.71
5.29

For the limited case, d j > 0 (j E J1 t2 J2) is a given constant. For the conditional

case, d j = m i n { l l Y i - aYll : i = 1 , 2 , . . . , m } , where yi (i = 1 , . . . , m) are given
points at which existing facilities are located.

For these problems we can prove the following result.

A D.C. OPTIMIZATION METHOD 223

LEMMA 5. Let h(x) = [Ix - all, d(x) = min{h(x), d}, where d > 0 is constant.
I f q : R+ --+ R is a convex nonincreasing function such that q+(0) > -oo , then
q[d(x)] can be expressed as the d.c. function:

q[d(x)] = g(x) - Ch(x) ,

where g (x) is a convex function and C is a positive constant satisfying C_>lq + (0) l.

Hence, we can extend our algorithm to limited distance and conditional location
problems. Below we report on our preliminary computational experience with these
models.

Table 7.1 exhibits the results for limited distance location problems with the d j
(j = 1 , . . . , n) generated uniformly in (0.25, 0.5). Note that when n - / n < 1/2,
the run times are within 25% (lower and higher) of the times for the all exponential
case in Table 6.4. However, when n - / n > 1/2, the run times are 2 to 4 times
longer than the all exponential case. For these latter problems, even though they
still exhibit near comer solutions, the problem is more difficult than the unlimited
distance location case. This can be explained as follows. When iterates are far
away from users near the optimal location, the attraction force is constant for those
users and stronger for users near the current iterate. A similar statement can be
made for repulsion forces. Thus more iterations are needed to approach the region
of attraction of the optimal solution. Note that problems with small d j values take
longer to solve. We report the results for the conditional location problems in Table
7.2. In this case, we choose m = 5 and the existing facilities points are selected
uniformly from (0, 1) x (0, 1). Note that when n - / n < 1/2, the run times are
within 60% (mostly higher) of the run times for the limited distance case in Table
7.1. However, when n - / n > 1/2, the run times are from 50% to 5 times longer
than the limited distance case. It appears then that the most difficult problem for our
algorithm is the conditional location problem. This can be explained by the fact that
the constants d j, which depend on randomly generated points yi (i = 1 , . . . , m),
were smaller, on average, than those in Table 7.1.

8. Concluding Remarks

In this paper, we proposed a general algorithm for solving single facility location
problems using d.c. optimization. The procedure was implemented and tested
on several thousand problems and the details of these experiments are reported
above. We demonstrated that the procedure is robust with respect to the location
of the optimal solution and can handle more general objective functions than
Euclidean distances. We also extended the procedure to solve limited distance and
conditional location problems, and conclude from our computational experience
that conditional location problems are the most difficult to solve. Finally, because
our procedure generates upper bounds, we can imbed it in a search procedure for
locating the single facility in the union of a finite number of convex polygons in
the spirit of Chen et al. [2].

224 H O A N G T U Y ET AL.

Appendix: Computation of Subgradients

The above algorithm involves in Step 3c the computation of a vector p k E OH(xk),
where, for Cj_> - q+ (0) > 0, we have

H(x) = ~ gj(x) + ~ Cjhj(x),
jeJ2 jEJI

gj(x) = qj[hj(x)] + Cjhj(x),

so that

H(x) = ~ {qj[hj(x)] +Cjh j (x)} + ~ Cjhj(x).
jEJ2 j eJ l

In this Appendix we discuss how to compute this subgradient. Below, we use
the notation (x, y) for inner product xTy between two vectors x and y.

L E M M A 6. A subgradient of the function h(x) = I Ix - a l l at point x ~ is the vector

X 0 - - a

IIx~ all
0

i f x 0 ~ a,

if x ~ = a.

Proof. If x ~ r a then the function h(x) is differentiable at x ~ so its subgradient
at x ~ is just its gradient at this point, s ince h2(x) = (Xl - a l) 2 + (x2 - a2) 2, we

X 0 -- ai
have, f o r / = 1,2, 2h(x~ 0h--~ax, = 2 (x ~ "Hence ~ - ~-(xO~ , andso

x ~ - a
V h (x ~ -- I Ix~ - a l l "

If x ~ ---- a, then h(a) = 0, so h(x) - h(a) = h(x)>_O Vx, and hence, h (x) -
h(a)>_(0, x - a) Vx. This implies that the vector 0 is a subgradient of h(x) at
a (0 e Oh(a)). []

L E M M A 7. Let q : R+ --* R be a convex nonincreasing function such that
q+(0) > -cx), and let g(x) = q[h(x)] + Ch(x) where Cr If Tr E Oh(x~
then

[q+(h(x~ + C]Tr e Og(x ~

where q+(t) denotes, as usual, the right derivative of q(t) at t.
Proof. Let to = h(x~ By convexity of the function ~(t) = q(t) + Ct (see

the proof of Lemma 1), we have ~+(to)(t - to) _< ~(t) - ~(to) Vt, i.e. (q+(to) +
C) (t - to) < (q (t) + Ct) - (q (to) + Cto), Vt. Hence, letting t = h(x) , we obtain

[q+(h(x~ + C](h(x) - h(x~ - g(x ~ Yx. (4)

A D.C. OPTIMIZATION METHOD

But, 7r E Oh(x ~ implies that

(Tr, x - x ~ - h(x~

225

and since q+(h(x~ + C>q+(0) + C>0 , we have

[q+(h(x~ + C](Tr, x - x~176 + C](h(x) - h(x~

This, together with (4), yields

([q+(h(x~ + Clsr, x - x~ - g(x ~ Vx,

as was to be proved. []

EXAMPLE I. If q(t) = a - wt, with w > 0, then for C > w , a subgradient of the
funct ion g (x) = q(llx - all) + C I I x - all at POint x ~ ~ M is

(C - w) x ~
P = i ixO_al I i f x ~

0 if x ~ = a.

EXAMPLE II. If q(t) = w e -~ with w > 0 and 0 > 0, then for C>Ow, a
subgradient of the function g(x) = w e -~ + CIIx- all at point x ~ E M is

X 0 - - a

P _-- [C - 0 w e - 0 l l x ~ IIx~ al l

0

if x ~ r a,

if x ~ = a.

LEMMA 8. Let U(x), V (x) be convex functions and A(x) = U(x) + V (x) . I f
p = u + v, with u E OU(x~ v E OV(x~ then p E OA(x~

Proof. Immediate. []

Using the above results it is easy to compute a subgradient of H (x) at x ~ E M if,
for every j , h i (x) = IIx - aJl l and qj(t) is as in Example I or II. For instance:

PROPOSITION 3. Assume that for every j : h i (x) = IIx - aJ l l , while qj(t) =
a j - w i t with wj > O. Then a subgradient o f H (x) at x ~ is

p =
x 0 -- a j x 0 - - a J

E [cj - + F, cj
j~s~nN(xO) IIx~ -- aJll IIx~ -- aJ l l ' j E J I M N (x O)

where N (x ~ = { j : x ~ # aJ}.

226 HOANG TUY El" AL.

PROPOSITION 4. Assume that for every j : h i (x) = IIx - aJll , while qj(t) =
wj e -Ojt with wj > 0 and Oj > 0 is the rate o f decay o f its attraction. Then a
subgradient o f H (z) at x ~ is

p =
x 0 _ a j

[Cj - Ojwje -05[[xO-ajll] IIz~ aJll
jEJ2ON(z ~

x o _ a j

x-,2_, c j IIx~ - aJll"
+

jEJlf3N(x O)

REMARK. In some models, polyhedral gauges are used instead of the Euclidean
norlI1.

Let h(x) = ~ (x - a), where qa(x) is a polyhedral gauge, i.e. a nonnegative-
valued function of the form ~(x) = maxi~z (c i, x}, III < such that B = {x :
~ (x) < 1 } is a polytope containing 0 in its interior. It can be proved that 0 E Oh(a),
while for x ~ a, we have Oh(x) = conv{c i" h(x) = (c i, x - a)}.

References

1. Chen, R. (1988), Conditional minisum and minimax location-allocation problems in Euclidean
space, Transportation Science 22, 157-160.

2. Chen, P., Hansen, P., Jaumard B. and Tuy, H. (1992), Weber's problem with attraction and
repulsion, Journal of Regional Science 32, 467-486.

3. Chen, P., Hansen, P., Jaumard, B. and Tuy, H. (1994), Solution of the multisource Weber and
Conditional Weber Problems by D.-C. Programming, Technical Report # G-92-35, Revised
March 1994, GERAD, University of Montreal, Montreal, Canada.

4. Drezer, Z., Mehrez, A. and Wesolowsky, G.(1991), The facility location problem with limited
distances, Transportation Science 25, 183-187.

5. Drezner, Z., and Wesolowsky, G. (1990), The Weber problem on the plane with some negative
weights, INFOR 29, 87-99.

6. Horst, R. and Tuy, H. (1993), Global Optimization, Kluwer Academic Press, second edition,
Dordrecht, The Netherlands.

7. Idrissi, H., Loridan, P. and Michelot, C. (1988), Approximation of solutions for location problems,
Journal of Optimization Theory and Applications 56, 127-143.

8. Love, R. E., Morris, J. G. and Wesolowsky, G. O. (1988) Facilities Location: Models and
Methods, North-Holland, Amsterdam.

9. Maranas, C. D. and Floudas, C. A. (1994) A global optimization method for Weber's problem
with attraction and repulsion, in Large Scale Optimization: State of the Art, eds. W. W. Hager,
D. W. Hearn and P.M. Pardalos, Kluwer Academic Publishers, Dordrecht, The Netherlands,
259-293.

10. Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.
11. Tuy, H. (1987), Global minimization of a difference of convex functions, Mathematical Pro-

gramming Study 30, 150-182.
12. Tuy, H. (1990), On a polyhedral annexation method for concave minimization, in Functional

Analysis, Optimization and Mathematical Economics, eds. L.J. Leifman and J.B. Rosen, Oxford
University Press, Oxford, 248-260.

13. Tuy, H. (1991), Effect of the subdivision strategy on convergence and efficiency of some global
optimization algorithms, Journal of Global Optimization 1, 23-36.

14. Tuy, H. (1991), Polyhedral annexation, dualization and dimension reduction technique in global
optimization, Journal of Global Optimization 1, 229-244.

15. Tuy, H. (1992), On nonconvex optimization problems with separated nonconvex variables,
Journal of Global Optimization 2, 133-144.

16. Tuy, H. (1993), D.C. Optimization: theory, methods and algorithms, Preprint, Institute of Math-
ematics, Hanoi.

A D.C. OPTIMIZATION METHOD 227

17. Tuy, H. (1994), A general d.c. approach to location problems, Preprint, Institute of Mathematics,
Hanoi.

18. Tuy, H. and A1-Khayyal, F. A. (1992), Global optimization of a nonconvex single facility problem
by sequential unconstrained convex minimization, Journal of Global Optimization 2, 61-71.

19. Tuy, H. and Thuong, N. V. (1988), On the global minimization of a convex function under general
nonconvex constraints, Applied Mathematics and Optimization 18, 119-142.

20. Weber, A. (1909), Ueber den Standort der Industrien, Ttlbingen (English translation: C.J
Friedrich (translator), 1929, Theory of the Location of Industries, University of Chicago Press,
Chicago.

21. Weiszfeld, E. (1937), Sur le point pour lequel la somme des distances de n points donn6s est
minimum, T~hoku Mathematical Journal 43, 355-386.

